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ABSTRACT

Measurement of stress and strain in rotating

turbomachinery is critical to many industries. The
search for a non-contactirig, non-interfering, non-

degrading measurement system is on going and

extensive. While several methods seem promising in

theory, implementation has proven troublesome. This

work uncovers and quantifies these implementation

issues in the context of a laser measurement system.

Both a Laser Doppler Velocimeter system and a

displacement laser system are utilized. It is found that

the key issues are signal to noise ratio, rigid body

compensation, measurement location, and conversion of

intermittent measurements to a continuous signal.

Accounting for these factors leads to successful
measurements. These results should lead to better ideas

and more practical solutions to the non-contacting, non-

degrading, non-interfering strain measurement system

problem.
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INTRODUCTION

The dynamics of rotating blades has been an

important research topic for decades. 1 Many industries

use rotating blades. The aircraft industry is the most

prevalent with its use of ducted fans, multi-stage

turbines and compressors, propellers, and helicopter
rotors. However, other industries such as the power

industry, the boat engine manufacturers, and the
windmill industry have a vested interest in the

advancements in blade dynamics. It is not surprising

then that blade analysis and testing have been the

subjects of voluminous research, especially in the last

two decades. While blade theory and finite element

analysis of blades is important and often very accurate,

it is testing that ultimately garners trust in the

complicated problem of rotating blades.

Much of the work in improving the testing of

rotating blades has been in order to develop a non-

contacting, non-degrading, and non-interfering

methodology and tool to sense frequency variations, to

sense mode shape variations, to measure vibrations, and
to measure the stress history of the blade 2'3'4'5'6'7'8'9.

In essence, the search is for a means to record the

vibration history of the blade. Some of these theories

and systems have been implemented and demonstrated,
but all have failed in all but the most basic

demonstrations. Overcoming the implementation

issues remains paramount.
Recently the Laser Doppler Velocimeter (LDV)

surfaced as a candidate for the dynamic measurement of

rotating blades. 1°At Reinhardt et al. showed that the
method is viable for the accurate measurement of the

vibrations of rotating fiat plates. However, the authors

only demonstrated the technique for the insignificant

case of a blade with a much higher vibration frequency

than rotation frequency. It remains to show that this

system works for more realistic rotation speeds, for
non-resonant excitation, and that strain can be resolved

from an intermittent velocity signal.

Using Reinhardt as a springboard, this work
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presents a non-contacting, non-degrading strain

measurement method using laser systems. The method

is a multi-mode measurement approach for use during

fan operation. Displacement lasers and laser

vibrometers are used in the development, although

displacement lasers prove more viable. Most

importantly, several key practical implementation

issues identified and resolved. These issues are signal to

noise ratio, rigid body compensation, measurement
location, and conversion of intermittent measurements

to a continuous signal. These issues are of universal

importance to and key in the demonstration of any

similar system.

returned light to a point on a photo-sensitive device.

Through calibration, displacement can be determined as

the reflection angle is proportional to target distance.

The point of reflection does not vary with target
distance. This results in low sensitivity to variability

in target angle. Typical sensitivity for a diffusion-

reflection laser would be 1% error for __.10° angle

change.
The Keyence LC-2450 was used in implementing

this work t:. The LC-2450 is a diffusion-reflection type

displacement sensor. Some key specifications for the

LC-2450 are given in Table 1.

LASER MEASUREMENT HARDWARE

Displo¢ement Lasers

Since, hardware limitations govern most practical

issues, a discussion of the laser hardware is a logical

starting point. In recent years, the development of

displacement lasers has progressed at a significant rate.
The resolution of such instruments can be very high, on

the order of 10.6 inches. This accuracy is ideally suited

for measuring small blade vibrations with high

accuracy. Also, the quality of the signal is exceedingly
clear.

The drawback of displacement lasers today is that

these high accuracies are achieved by very short offset

distances. Typically the offset distances are between 0.1

and 12 inches. In a rotating blade test, the measurement

system must not interfere with the flow. Displacement
lasers would not meet this criterion. However, this is

the only known drawback and the state of the field is

progressing quickly. It is anticipated that a large
standoff laser with high accuracy will be available

within a few years.

There are several methods used by displacement

lasers. Some are based on the intensity of the returned

light. Some are based on reflection. Some are based on
diffusion-reflection. Because of the curved nature of

I_t_ser
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Figure 1: Schematic of Operating Principles of a

Diffusion-Reflection Displacement Laser.

Specification

Measuring Ranl_e
Mean Standoff Distance

Typical Resolution

Frequency Response

Sampling Frequency

Instantaneous Response Time to
within __.10%

Value

_-4-8 mm (_ 0.31in)

50 mm (1.97 in)

0.5 lam (1.97 p-in)
20 kHz

50 kHz

100 las

Table 1: Specifications for a Displacement Laser

blades, two important properties must be considered in Laser Doppl¢r Velocimeters

selecting a laser type for blade applications. First, the

point of reflection must not vary as the target vibrates.

Second, low sensitivity to target orientation angle is

required.

The method selected for this application is the
diffusion-reflection method. These lasers are best suited

for diffusive type surfaces, including metals. In this

method, a beam is emitted perpendicular to the target.
The reflection is diffused in all directions, with some of

the reflected light hitting the receiver lens (Figure 1).

Based on the return angle, the receiver lens focuses the

The considerations for selecting an LDV system are

similar to those for selecting a displacement laser. The

key decision is whether to use a tracker system or a

counter system. A tracker closes a loop around the

received Doppler signal and outputs the closed loop

values. This provides clean signals given a continuous

Doppler signal. Because of the closed loop nature, the

does not begin to output until the signal is "locked".

This time, although small, is not suitable for short
burst information as in rotating systems.
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A counterusesa veryaccurateclockto timethe
Dopplersignalcycles.From this, the frequency and

velocity are derived. The counter can respond very fast

if it is set to count only one Doppler signal period.

Response times can be applicable to high speed

turbomachinery applications. However, at these rates,

the noise is prohibitively high for accurate

measurement. In order to get sufficiently reduced noise,

the counter must be set to the speed of a tracker.
Based on the above discussion, it is clear that LDV

systems cannot be used for high speed rotating

applications. However, the use of LDV systems for

stationary strain are demonstrated in this report.

The Dantec 55X in conjunction with a Dantec

55N10 Frequency Shifter and 55N20 Tracker were

selected for this application t3. Some key specifications

for the Dantec 55X system are given in Table 2.

SFw.x:ification

Measurin_ Range
Mean Standoff Distance

High End Resolution

Full Range

Frequency Response

Value

--+0.1 m

Multiples of 1.0 m

36 larn/sec - 11 mm/sec

__.4.6 mm/sec - _+1.4 m/sec

1200 kHz

Table 2: Specifications for a Laser Doppler System

LASER MEASUREMENT TO STRAIN: THEORY

This section details equations and theory required to
derive strain from the laser measurements. First the

strain equations are shown given a set of continuous

displacement measurements x(t). In rotating systems,
in which the data is sparse, it is first necessary to

measure or develop the displacement time histories,

x(t).

Strain from Displacement

Assume the displacement time histories at N

physical points are measured. This defines the

displacement state of these N points. A modal matrix,
NxN

_ R , containing these N points and N modes of

interest is used as a filter or operator to obtain the

modal displacements of the N modes:

q(t) = t_-]x(t) (1)

Equation (1) defines the modal displacements.
From this another modal transformation, _'_R MxN,

having the same N modes but M strain outputs can be

developed and used to determine the strain at any

location on the structure, in particular the root of the

blade. Equation 8 shows this.

e(t) = _'q(t) (2)

Equation 2 defines the strain at M locations of interest.

While displacement lasers measure x(t) directly, the

LDV system measure velocity and x(t) must be derived.

In the special case of harmonic response, this is not a

problem. The LDV velocity signal can be used to
derive strain. Similar to ecluation I, the modal

velocities can be derived from the velocity
measurements:

_l(t) = cI)-'k(t) (3)

Using harmonic identities, we can find q(t) without

integration and equation 2 can be applied for strain:

q(t) = 1 (I)-'k(t -/_,,_p)
P

(4)

Continuous Signal from Sparse Rotating Data

For a stationary object, the analog signal from the

laser is continuous and the displacement time history,

x(t), is read directly (this section will assume a

displacement laser). However, for rotating blades, the

measurements are a set of evenly spaced clusters of

measurements (Figure 2). Clearly, just connecting the

sampled data points is not sufficient to define the full

time history, x(t). To overcome this limitation, a

method for representing x(t) as a continuous function

from the sampled points xk=x(t0 is derived.

Is • • • I . • • I . • , I , . . I .-_,-I--,-_ I , . . I , . .

10

5

i°
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..... '..,'._.i...'.._-i_
U 02 114 06 0_ 1 12 14 t6

Figure 2: When measuring rotating blades, sampled
data points do not directly provide a

complete time history.

The development begins be recalling that any

periodic function can be expanded in a Fourier Series as:

3

American Institute of Aeronautics and Astronautics



N

f(t) = _ [aicos(toit ) + bisin(toit)] (5)
i=0

where:
2r_i

to t = --, T = t N - t o
T

and f'(t) represents a function f(t) rebuilt from its

frequency decomposition.

For a given sample, T and N are known so the {co_}

are known. If the coefficients {a,} and {b_} are known,
then the function is known over the entire measurement

domain. For a continuous evenly spaced set of data,

{a,} and {th} are found via a fast Fourier transform

(FFF). The problem is not so simple for the clustered

data of the rotating blade problem.

The coefficients {ai} and'{bi} are found from the set

of sampled data {f(t0 : k=l,..,N} by the solution to:

-COS(Oot t -.- COS(ONtI

: i

COS(Oot N .,. COS(ONt N sintottr_ --, sino_st N b If(iN) J

(6)

This is equivalent to the common form Ax=b, which

represents a linear system of equations with constant
coefficients.

Recall that coi and t_are known, so the terms of the

matrix A can be evaluated. The solution to the problem

is not as direct as one might hope. In order to maintain

a real time system, this solution must be fast---on par

with the O(NlogN) FFT. This eliminates the basic but

costly Gauss elimination which is O(N 3) and the super-

robust singular value decomposition which is O(N3).
Also, due to the clustered nature of the data, error

propagation is a serious concern. This eliminates many

other techniques such as the basic QR which suffers in

the calculation of R 1. Fortunately, other solution

techniques exist which take advantage of the structure of

the problem to enable a quicker and more accurate
solution.

IUQR Algorithm

One solution technique that is particularly useful

for a solution to the coefficients of Equation 5 is the
inverse unitary QR (IUQR) algorithm) 4 The IUQR

algorithm does not explicitly form Equation 6, but casts

the problem of Equation 5, defined over the domain

O6 [0,27t) into a complex problem over the complex

domain z=e _°. Then there is a solution to the complex

problem:

DAc =DAlf (7)

where: D = diag[w_, w z..... Win] and w k is a positive

weight on f(t0, with m _<N

A = diag[zl, z2..... Zm]

f = vector of data points

"1 z_

1 z 2

A= " :

• :

1 Z m

2
•, Z/-INZ 1 •

2 N-I
Z 2 .." Z 2

: • .

2 N-I
Z m "" Z m

The solution, c, contains the coefficients for the least

squares solution to Equation 6. The details of the

algorithm are complicated and are found in Ref. 14.

Simply put, the algorithm uses Szego polynomials and
the structure of the problem to construct a solution

directly without explicitly forming Q or R _ as would be

needed for most QR decompositions.

, The IUQR algorithm is O(pN2), where p is

some coefficient. Due to the complex arithmetic and

the large number of calculations within each loop, the

coefficient p is fairly high, say 40. Therefore, for small

problems the IUQR routine acts like O(N 3) but as N

gets larger than 100, it acts as O(N2). While not

O(NlogN) like the FFr, this is near real time.

The IUQR algorithm is used as the basis for real

time solutions of Equation 6. From this the
continuous function is defined over the entire

measurement domain using Equation 5.

LASER MEASUREMENT TO STRAIN:

PRACTICAL CONSIDERATIQNS

The theory of a laser strain measurement system is

very simple as shown in Equations 1 through 6.
Implementation is much more complicated. This

section details the key issues and identifies solutions for

each. The section shows that making the laser strain

measurement system work in practice is a difficult

endeavor, but with patience, practice, and sound

judgement, good strain results may be obtained.

_e and Noise

Evenly spaced data is subject to the Nyquist criteria

for expansion by Fourier Series. The Nyquist frequency

is 1/2 the sample frequency. Equation 5 is also subject
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to the Nyquistcriteria.In this case,the Nyquist
frequency1/2of the_ samplefrequency.This
frequencyis givenby N/T (seeEquation5). This
suggeststhatthebladeshouldbemaximallysampled
eachtimeit comesintoview.Theoretically,thiswill
maximizethe ratio N/T and the dynamicrange.
Practically,it isnotpossible.

Thepracticallimitsdueto noisearebasedon the
choiceof algorithmto solveEquation5. It hasbeen
shownpreviouslythatinstabilitydueto noiseincreases
astheclustersizeincreasestS. Instabilitydueto noise
wasalsorepeatedlyobservedduringtestingfor this
report.Experienceleadsto threeaxiomsneededfor
practicalimplementationof theIUQR(or anyother)
algorithmonclustereddata.

Axiom 1:

Axiom 2:

Axiom 3:

Measurement noise must be minimized.

The process being measured must be band

limited to a frequency below the effective

Nyquist frequency of the measurements

since higher frequency responses will alias
as noise into the solution.

End point matching is required to prevent
end point mismatches from creating high

frequency content that acts as noise in the

solution. Windowing may be used to

achieve end point matching.

Cluztcr Size

It is not noise alone that creates the instability in

the algorithms. It is noise coupled with the cluster

size. Noise sensitivity increases with cluster size.
Given that noise will exist, there is a maximum cluster

size that will result in a stable solution. This

maximum cluster size is dependent on several practical

aspects such'as the size of the matrix A in Equation 6,

laser noise level, and the algorithm chosen to solve

Equation 5. Because of this specific nature of these

items, a general, rather than theoretical, methodology is

developed to determine the cluster size.

First, define "in-view ratio" as the percent of time
that the blade is in view. The reciprocal of the in-view

ratio, which is typically the number of blades, has

greater physical significance that the in-view ratio.

The methodology begins with a wide band time
history similar to that shown in Figure 3. This is

assumed to represent some real vibration data. A set of
blade counts and associated cluster sizes are selected for

study. The signal is then sampled and the IUQR
scheme is used to recreate the full filtered signal. For a

given blade count, a cluster size of 1 (uniform spacing)

is used as tl_e baseline since the algorithm is very stable

for a cluster size of 1 (just as the FFT is stable in this

condition). The metric for comparison is the ratio of

the norm of the solution vector, Ixl, to the norm of the
solution vector for a cluster size of i.

05 1 1.5 2 2S 3

Ttme_}

Typical wide band time history
determine limits on cluster size

]5

used to

For the test apparatus used in this experiment, the

maximum cluster size was determined by sampling the
data in cluster sizes from 1 to 10 in blade counts from 2

to 25. Figure 4 shows the results.

_o.0 -_F----f----t_r-_ _--In w_, 12s !-----
: : : It:l I ' *'1 ....... I"w_t2°l

90 ........ q- ........ ¢ ......... ; ......... ,- ---I ...... ' ...... In Vhl,_ 118 ......

: : : ..ll_'-l....I !....AL.,.I.... n V,v,wI 14 !..2...80
........ T ........ : ......... :"........ _ "'", ...... ,_,'" -- n Vow I 2 "'_""

: ; : ff I r _1 .... n Jew OI !

! .............................._......-J_i/--ir""-_-!'I....I°_:-_
i : IH;I ./! ,_:;I--_.w_ _e ""1:

..... -:. ........ :......... :...../.._J.'.t...;.': .... /-_.]--I-- n Viow 7 I.! .....
60 : ', f • ' ! ;, -- -- n Vie_ 1 e ;

S0
_ : : : / !lil /;ii /ii l...... _,,,,5 li

_ i7';_'/-?"i'7'"_I-I........... I:......

........._........:........._/.....::,_I'J..,I.'...I.+.....'_..I....i,w,,12I'.....
4.0 : I ', j- ' _1 I I

3o i- ....... _ ........ !....... _,........ _......... !........ ?! .......
r _ J/,'/ Ji " ' "_i : i :,

,o ... ...._.___........
o.oq-_-_- _- I I I i I_-_

0 I 2 3 4 5 6 "t S 9 lO

CItil_ Size

Figure 4: Stability of IUQR algorithm in use with the
LC-2450 displacement and blade counts
cluster sizes.

The steep slopes on the curves in Figure 4 show

how quickly the solution becomes unstable. The comer

points from these curves have been plotted in Figure 5.

This figure is the ultimate reference guide for this

method. The blade configuration will govern how large

of a cluster size can be used. This in turn governs the

maximum frequency that can be resolved and this is

shown on the Y2 axis of Figure 5. Remember, signal
must be band limited by this value.

For all practical purposes, a cluster size of 1 is not

very useful since it only can resolve frequencies at
0.5*RPM. A cluster size of 2 may be acceptable since

it can resolve up to the RPM frequency. This captures

all of the once per rev information. However, this limit
is so close to the main excitation frequency that it

makes the regeneration suspect. Therefore, a minimum
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clustersizeofthreeissuggested.LookingatFigure5,
thisimpliesthatthismethodisonlyusefulforfanwith
lessthan16blades.Thislimitationmustbeaccepted.

_o ... ! .! !. !. !.. !. !...!.. ! ! !. !. _oo
9 ..... : -----2..----_------_ ...... _...... _...... ; ...... _.......';......_ ..... $...-.-_ ...... 90

, ..... g .....i.....!......i......i......i......i......_-.----!-----.-"--'--.-:'---';........

......!....-.....i......i......i......i......i......!-....._...-------'-'--"_......_o

_------i------!'i......i......i......i......i......i__'"ii ......'°

., i i  iiiiiiiiiiiiiiiii!iiii: o,o
....... _...-_....-_.-....i......i......i......i......i..... i :_ _ ..: ,o

0 2 4 6 I I0 12 14 16 I_ 2a 22 2,1 26

lt(l_ RitLo)

Figure 5: Cluster size limitation for different blade
counts

Determination of Modal Content

Since the method described here is a modal

transformation method, all of the usual modal

representation issues are relevant. One important issue

is the number of modes required to represent both the

measured quantity (displacement or velocity) and the

strain output. There have been volumes of data and

theories presented on this. That is beyond the scope of

this paper. The nature of blades is such that the strain

is typically governed by three or four modes. For this
research, two lasers were available so two modes were

considered.

Selection of Measurement Location Points

This may be the most important aspect of using a
finite set of lasers to determine strain. There are

actually two aspects related to measurement location.

The first is choosing optimal locations for measurement
(this section) and the second is determining which

location is actually being measured (next section).

The strain derivation methodology requires that the

displacement measurements be accurately transformed

into modal amplitudes. While the mode shapes are

inherently orthogonal, this quality is typically lost at a

small subset of points. The dynamicist must choose

measurement points so that the matrix ¢ in Equation 1

is as orthogonal as possible. The loss of independence
results in amplification of any noise or any uncertainty

in the modal amplitudes.

For example, consider the flared twin-blade design

shown in Figure 6. The Y axis is the rotation axis.

The first two modes of each uncoupled blade are shown

in Figure 7. These are classic bending and torsion.

In order to derive the strain using a two mode

approach, two lasers are needed. A subset of potential

laser points is shown in Figure 8. Any pair of these

may be used. Also shown in Figure 8 are the modal

matrices associated with combinations of these points.

As can be seen by the normalized determinants, the

(3,4) combination is an excellent choice for laser

locations and (1,2) is an unacceptable choice. Set (5,3)

is ambiguous, and the derived strain using this

combination (Figure 9) shows just this. Clearly, noise

has been amplified and the importance of a good choice
of locations has been shown.

I 0.032"

Yv

Figure 6: Schematic of flared blade and attached.

(a) Mode 1, I s' out of plane bending, f = 31.7 Hz

(b) Mode 2, torsion, f = 160 Hz

Figure 7: First two mode shapes of the flared blade.

Unfortunately, for a rotating system, the lasers

must be on the structure at the same time during the

entire blade passage. Hence, they must be in radial line,

as in locations (1,2) or (5,3) in Figure 9. This implies
that more than two lasers are needed to clearly and

cleanly distinguish between the first two modes in this

rotating model. This understanding is critical to getting

good results.
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Figure 8:

001 i__000-30.50 0.0 ' 21

--168.4-292.0] _341
-168.4 292.0 J ' =2.00

--168.4-292.01 1_35,
Co)"

(a) Potential measurement locations on the

flared blade; (b) their' associated modal

matrices and normalized determinants.
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Figure 9: Demonstration of the noise amplification by

choosing a weakly independent input modal
matrix. "

Measurement Point Identification

As shown in Equation 1, the mode shape
coefficient at the laser measurement location is used in

the transformation to strain. Because of this, the

accuracy of the measurement location is important. It
is easy to show that a small (_0.1 inch) errors in laser

locations can result in a large (20%) errors in strain.

Therefore, some care must be taken in identifying the

measurement locations. Careful measurement may be

complicated because some lasers do not come to a
perfect point when in focus. Therefore, determining

locations via direct measurement can easily result in
large percentage errors.

To alleviate this problem, a procedure was
developed to determine the laser measurement locations

without measurement. First the system is excited at a

resonance for each laser used. For N lasers, the steady

state responses to N resonant excitations are recorded.
For an assumed measurement location, the modal

amplitudes can be calculated using Equation I. N

measurements results in N modal amplitude time

histories corresponding to N modes. These time

histories are reduced to a single value via root mean

square summation of the time history. Now a single

value represents each modal amplitude. In equation
form,

qi,rms = qt2 i= 1..... N (8)

where the subscript t spans a set of m points in time.

For the excitation at c0,, q_em_ should dominate.

Therefore, we look for a set of N locations where q_x_
dominates at o)_, q2._ dominates at co2, and so on.

This process can be achieved quickly if an approximate
location for each laser is considered. The search is
across an N dimensional matrix of cases.

Rigid Body Compensation

Strain is a relative displacement quantity. The
lasers measure absolute motion. The difference can

negligible if there is a nearly fixed condition somewhere
in the modeled structure. However, in the case of a test

system excited by a shaker, the base cannot be

considered fixed. This rigid body motion must be

considered in some way. Recalling that it requires one

laser for each degree of freedom, considering all six rigid

body degrees of freedom may not be practical. It is

recommended that only the likely rigid body motions be

considered and compensation be applied only to these
motions.

It must be pointed out that there are exceptions to

the need for rigid body compensation. However, the

structural dynamicist can use his system knowledge to

eliminate this need. Specifically, even if the system is

fixed to a shaker, if the input is resonant and the

damping is low, then the rigid body (base) motion will

be small compared to the total measurement. In this

case, errors are expected to be less than 2%. Contrast

this to the off-resonant excitation where the rigid body

error may be as high as 50%. The authors believe the

failure to compensate for this is the reason several

previous laser strain systems have failed.
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RESULTS: NON-ROTATING FLAT BLADE

This section describes use of the displacement laser

and LDV strain measurement system on non-rotating

systems. While this was demonstrated for a resonant

condition [Ref. 11], this section extends the procedure

to multiple modes, off-resonant conditions, and non-

stationary excitations.

A simple beam is used as an example. This beam

is part of a blade-hub system as shown in Figure 10.
The first two modes are the classic first and second

bending of a beam. The hub is connected to a shaker to

provide excitation. The practical issues of the previous

section were addressed prior to taking data.

I 7, I

1
0.5" 0.7 " ,1_

5.0" Y I

0.020",_ 4

" t
Figure 10: Schematic of flat blade and attached hub

i .... iiiiiiiiiiii!  ii ii i:' il_ _o

! o
I

.......... : ................. L. - - -.z M,:,_ 2 t,u,m ...... '
40

OO2 004 006 00_ OI

"fimr (_ I

Figure 11: A comparison of the strain measured by a

strain gage and the strain derived from a one

laser LDV system and a two laser LDV

system. The excitation is harmonic at the

first natural frequency (35 Hz). Rigid body

compensation was not applied.

A similar result can be shown for the second mode

(Figure 12). In this case, there is a small contribution

from the first mode (35.0 Hz) contaminating the one

mode laser results. Also, rigid body effects are coming

into play. Similar results are demonstrated for the

displacement laser system in Figures 13 and 14. The

conclusion from this data is that a rigid body correction

is not required for resonant excitation. A single mode

solution, implying a single measurement, is possible

but only with very pure signals.

Resonant Strain

As a reference to judge the laser strain system, a

strain gage was placed near the hub of the blades. This

gage measurement is used as the reference in all plots.

By far the easiest condition under which to determine
laser strain is at a resonant condition. This condition

has two huge advantages: Rigid body effects are

minimized and a single mode dominance. Figure 11

shows a comparison of the strain gage and the LDV

laser derived strain given a first natural frequency base

input at the first natural frequency. This figure shows

the strain derived using only the first mode and then

using the first two modes. Clearly all three are very

close. This implies that one laser and one mode could

be used for this resonant condition. Most importantly,

the transformation from laser velocity to strain is
demonstrated.

: - : t. : .I :._ "-
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Figure 12: A comparison of the strain measured by a

strain gage and the strain derived from a one

laser LDV system and a two laser LDV

system. The excitation is harmonic at the
second natural frequency (215 Hz). Rigid

body compensation was not applied.
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Figure 13: A comparison of the strain measured by a

strain gage and the strain derived from one

displacement laser and two displacement
lasers. The excitation is harmonic at the first

natural frequency (35.0 Hz). Rigid body

compensation was-not applied.
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Figure 14: A comparison of the strain measured by a

strain gage and the strain derived from one

displacement laser and two displacement
lasers. The excitation is harmonic at the In'st

natural frequency (215 Hz). Rigid body

compensation was not applied.

Off-resonant Oscillation

Off-resonant response is far more complex than

resonant response because two issues become

important. First, a multi-mode approach must be taken

since many modes are contributing significantly to the

response. Second, rigid body compensation is required

because the amplification (response to excitation) is not

very large. As mentioned before, extra measurements

are needed for each rigid body degree of freedom.
As an example of the importance of a rigid body

compensation, consider an off-resonance response. In

the simple blade example, a 36.2 Hz harmonic
excitation is used rather than the 35.0 Hz resonant

excitation of the previous section. Figure 15 shows a

comparison of the strain gage strain and the LDV laser

derived strain using two lasers without considering the

rigid body correction. The error between peaks is an

unacceptable 27%. The excitation is from an axial

shaker imposing a transverse (Y-axis) translation and a

out-of-plane (X-axis) rotation into the base of the blade.

When rigid body compensation is applied to these two

degrees of freedom via two more laser measurements,

the error drops to 5% (Figure 16). Similar results can

be demonstrated for the displacement laser system.
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Figure 15: A comparison of the strain measured by a

strain gage and the strain derived from the

two laser LDV system. The excitation is off-

resonance and harmonic. No rigid body

compensation was applied.
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Figure 16: A comparison of the strain measured by a

strain gage and the strain derived from the

two laser LDV system. The excitation is off-

resonance and harmonic. Rigid body

compensation was applied.

ltESULTS: ROTATING BLADE SYSTEM

The full demonstration of rotating strain has not

been completed. However, high speed data acquisition
has been demonstrated. The requirements for rigid body

compensation and for a flared blade are more than two
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lasers.Onlytwolaserswereavailableattesttime.The
rotatingbladeusedisshowninFigure6.

BasedonFigure5 andthedimensionsof theflared
blade,a clustersizeof 3 is themaximumpossible.
Withthisinmind,thebladepairwasrotatedupto2400
RPM.

Twolaserswereusedin thisdemonstration.Laser
1(calledthetiplaser)is3.53"fromtheaxisof rotation
andlaser2(calledthemidlaser)is 1.88"fromtheaxis
ofrotation.Figure17showsasmalltimesegmentof
thelasermeasurementsfromtherotatingstructure.The
measureddataof Figure17is reducedto 3 pointsper
bladepassage.ThisisshowninFigure18.

Figures17and18showthatthetechnologyexists
to recorddisplacementdataat highdatarates.Given
enoughlasermeasurements,this datacan thenbe
convertedto strain.Thepro_:essfromthispointis to
performrigidbodycompensationon thedata,usethe
IUQRalgorithmto expandthediscretemeasurements
intoafull field,anduseEquations1and5 to derivea
continuousstrainmeasurement.
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002 004 0O6 00! 0.l

Figure 17: View of rotating data recorded by two lasers

on the flared blade. Note that this represents
both blades.
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Figure 18: Data measurement points extracted from the

rotating data for use in determining the
strain.

SLrMMARY AND CONCLUSIONS

The work presented here demonstrates that

displacement laser based systems can be used to measure

the strain in stationary systems. Differences between

the laser derived strain and the reference strain gage were

consistently less than 1% for resonant conditions and

less than 10% for other conditions. Analytic

demonstration of the method to rotating systems has

been provided. Demonstration of the method for

rotating systems has yet to be completed.

The theory also demonstrates that the sparse

number of points measured by the lasers as the blades

move past can be expanded, under certain conditions,

into the complete strain field. Furthermore, this can be

done at near O(N 2) speed. This is near real time on a

high end computer.

Beyond theory, this work identifies several practical

issues for any laser system and demonslrates

implementation techniques to overcome these issues. It

has been shown that practical laser based strain

measurement is possible with proper attention.

Finally, given the current state of this

development, displacement lasers can be confidently

used to measure the strain in stationary systems in a

non-contacting way. However, further advances are

required in order to get to high resolution (as exists

today) with sufficient stand-off so that this system can

become truly non-interfering.
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